Calculus Made Easy


Lu par LibriVox Volunteers

(4.6 stars; 13 reviews)

Calculus Made Easy: Being a Very-Simplest Introduction to Those Beautiful Methods of Reckoning which Are Generally Called by the Terrifying Names of the Differential Calculus and the Integral Calculus is is a book on infinitesimal calculus originally published in 1910 by Silvanus P. Thompson, considered a classic and elegant introduction to the subject. (from Wikipedia)


Some calculus-tricks are quite easy. Some are enormously difficult. The fools who write the textbooks of advanced mathematics—and they are mostly clever fools—seldom take the trouble to show you how easy the easy calculations are. On the contrary, they seem to desire to impress you with their tremendous cleverness by going about it in the most difficult way.

Being myself a remarkably stupid fellow, I have had to unteach myself the difficulties, and now beg to present to my fellow fools the parts that are not hard. Master these thoroughly, and the rest will follow. What one fool can do, another can.
(from the Prologue) (10 hr 7 min)

Chapitres

Preface to the Second Edition, Prologue 2:05 Lu par Adam
Chapter I: To Deliver You from the Preliminary Terrors 2:36 Lu par Adam
Chapter II: On Different Degrees of Smallness 11:07 Lu par Mike Pelton
Chapter III: On Relative Growings 17:26 Lu par katetastrophe
Chapter IV: Simplest Cases 17:41 Lu par katetastrophe
Exercises I, Answers to Exercises I 4:01 Lu par Adam
Chapter V: Next Stage. What to Do With Constants 17:55 Lu par Le
Exercises II, Answers to Exercises II 11:30 Lu par Le
Chapter VI: Sums, Differences, Products, and Quotients 32:31 Lu par Le
Exercises III, Answers to Exercises III 10:14 Lu par Paul E J King
Chapter VII: Successive Differentiation 5:29 Lu par Paul E J King
Exercises IV, Answers to Exercises IV 6:37 Lu par Le
Chapter VIII: When Time Varies - Part 1 16:13 Lu par Jargoniel
Chapter VIII: When Time Varies - Part 2 15:14 Lu par Jargoniel
Exercises V, Answers to Exercises V 6:25 Lu par Bruce Kachuk
Chapter IX: Introducing a Useful Dodge 25:32 Lu par Bruce Kachuk
Exercises VI and VII, Answers to Exercises VI and VII 11:12 Lu par Bruce Kachuk
Chapter X: Geometrical Meaning of Differentiaton 16:27 Lu par realisticspeakers
Exercises VIII, Answers to Exercises VIII 5:45 Lu par Le
Chapter XI: Maxima and Minima - Part 1 14:10 Lu par clarinetcarrot
Chapter XI: Maxima and Minima - Part 2 17:14 Lu par clarinetcarrot
Exercises IX, Answers to Exercises IX 5:43 Lu par clarinetcarrot
Chapter XII: Curvature of Curves 13:50 Lu par clarinetcarrot
Exercises X, Answers to Exercises X 7:15 Lu par clarinetcarrot
Chapter XIII: Other Useful Dodges - Part 1: Partial Fractions 23:51 Lu par clarinetcarrot
Exercises XI, Answers to Exercises XI 8:21 Lu par clarinetcarrot
Chapter XIII: Other Useful Dodges - Part 2: Differential of an Inverse Function 5:23 Lu par clarinetcarrot
Chapter XIV: On True Compound Interest and the Law of Organic Growth - Part 1 (… 19:03 Lu par Paul E J King
Chapter XIV: On True Compound Interest and the Law of Organic Growth - Part 1 (… 27:45 Lu par Paul E J King
Exercises XII, Answers to Exercises XII 6:56 Lu par Paul E J King
Chapter XIV: On True Compound Interest and the Law of Organic Growth - Part 2: … 2:48 Lu par Le
Chapter XIV: On True Compound Interest and the Law of Organic Growth - Part 3: … 21:56 Lu par Le
Exercises XIII, Answers to Exercises XIII 8:15 Lu par Le
Chapter XV: How to Deal With Sines and Cosines - Part 1 8:57 Lu par Son of the Exiles
Chapter XV: How to Deal With Sines and Cosines - Part 2: Second Differential Co… 6:37 Lu par Ielmie
Exercises XIV, Answers to Exercises XIV 9:01 Lu par Le
Chapter XVI: Partial Differentiation - Part 1 7:36 Lu par clarinetcarrot
Chapter XVI: Partial Differentiation - Part 2: Maxima and Minima of Functions o… 4:33 Lu par clarinetcarrot
Exercises XV, Answers to Exercises XV 6:45 Lu par clarinetcarrot
Chapter XVII: Integration - Part 1 5:09 Lu par Bruce Kachuk
Chapter XVII: Integration - Part 2: Slopes of Curves, and the Curves themselves 6:43 Lu par Bruce Kachuk
Exercises XVI, Answers to Exercises XVI 2:10 Lu par Bruce Kachuk
Chapter XVIII: Integrating as the Reverse of Differentiating - Part 1 9:03 Lu par Bruce Kachuk
Chapter XVIII: Integrating as the Reverse of Differentiating - Part 2: Integrat… 1:53 Lu par Bruce Kachuk
Chapter XVIII: Integrating as the Reverse of Differentiating - Part 3: How to D… 9:10 Lu par Bruce Kachuk
Chapter XVIII: Integrating as the Reverse of Differentiating - Part 4: Some Oth… 5:59 Lu par Bruce Kachuk
Chapter XVIII: Integrating as the Reverse of Differentiating - Part 5: On Doubl… 4:21 Lu par Bruce Kachuk
Exercises XVII, Answers to Exercises XVII 6:36 Lu par Bruce Kachuk
Chapter XIX: On Finding Areas by Integrating - Part 1 23:42 Lu par Bruce Kachuk
Chapter XIX: On Finding Areas by Integrating - Part 2: Areas in Polar Coordinat… 3:44 Lu par Bruce Kachuk
Chapter XIX: On Finding Areas by Integrating - Part 3: Volumes by Integration 3:44 Lu par Bruce Kachuk
Chapter XIX: On Finding Areas by Integrating - Part 4: On Quadratic Means 4:04 Lu par Bruce Kachuk
Exercises XVIII, Answers to Exercises XVIII 7:43 Lu par clarinetcarrot
Chapter XX: Dodges, Pitfalls, and Triumphs 14:52 Lu par clarinetcarrot
Exercises XIX, Answers to Exercises XIX 5:05 Lu par clarinetcarrot
Chapter XXI: Finding Some Solutions - Part 1 15:00 Lu par clarinetcarrot
Chapter XXI: Finding Some Solutions - Part 2 13:05 Lu par clarinetcarrot
Epilogue and Apologue 3:25 Lu par Rachel

Critiques


(4 stars)

It's good, but you can't listen to the last Chapter.